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Simple Two-Transistor Single-Supply
Resistor-Capacitor Chaotic Oscillator

Lars Keuninckx, Guy Van der Sande and Jan Danckaert†

Abstract—We have modified an otherwise standard one-
transistor self-biasing resistor-capacitor phase-shift oscillator to
induce chaotic oscillations. The circuit uses only two transistors,
no inductors, and is powered by a single supply voltage. As such
it is an attractive and low-cost source of chaotic oscillations for
many applications. We compare experimental results to Spice
simulations, showing good agreement. We qualitatively explain
the chaotic dynamics to stem from hysteretic jumps between
unstable equilibria around which growing oscillations exist.
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I. INTRODUCTION

RECENTLY the interest in chaotic systems has been
revived following the advent of novel and worthwhile

applications. Chaotic systems are now being used for so-
called chaos encryption, in which data signals can be secured
by hiding them within a chaotic signal. Relying on chaos
synchronization the original messages can then be safely
recovered [1]. Also, the long-term unpredictability of the
chaotic signal makes these systems well suited for true random
bit generation [2]. In robotics, chaotic signals are being used
in neural control networks or as chaotic path generators [3].
Finally, from a more fundamental point of view, a shift in
interest towards networks of interconnected chaotic unit cells
can be observed [4]. In all these applications, a need exists
for flexible and preferably low cost chaotic circuits. Discrete
components are preferable over operational amplifiers and
specialized multiplier chips, the latter only being produced by
a few suppliers. Single supply and low voltage operation widen
the applicability, as does a wide easily tunable frequency
range. Finally, using chaotic circuits as units in large networks
adds the condition that the couplings between these units are
dependable and stable. Requiring inductorless circuits will
avoid such difficulties.

Since the development of Chua’s circuit [5], there has been
a considerable interest in the construction of autonomous
chaotic circuits. Well known circuits, such as the Wien bridge
oscillator, have been modified to produce chaos [6]. Often,
these modifications involve the addition of an extra energy
storage element such as an inductor at the right place, thereby
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adding a dimension to a predominantly two-dimensional limit
cycle oscillator. In other cases, notably the Collpits oscilla-
tor [7], a chaotic regime is already present for certain values
of the design parameters. Others directly translate a known
chaotic system of differential equations to electronics. The
necessary nonlinear terms are implemented by using dedicated
analog multipliers as in reference [8] or operational amplifier
based piece wise continious functions [9]. Being able to
avoid operational amplifiers and dedicated multipliers is a
plus in terms of cost and circuit complexity, as there is
no connection between complexity -in terms of used parts-
of the circuit and complexity of the chaotic oscillations -in
terms of measurable quantitative properties such as entropy,
attractor dimension, spectral content etc. Therefore chaotic
oscillators using minimal and more basic components as in
references [10] and [11] are desirable from an economic and
logistic viewpoint.

Elwakil and Kennedy conjecture that every autonomous
chaotic oscillator contains a core sinusoidal or relaxation
oscillator [12]. Accordingly, one can derive a chaotic oscillator
from any sinusoidal or relaxation oscillator. Motivated by
this, we set out to modify the well known resistor-capacitor
(RC) phase shift oscillator, described as early as 1941 in
reference [13] to produce chaos. It has been used previously
as the basis for chaotic circuits. Hosokawa et al. report
on chaos in a system of two such oscillators, coupled by
a diode [14]. They analyze the system as two nonlinearly
coupled linear oscillators. Ogorzalek describes a chaotic RC
phase shift oscillator based on a piecewise-linear amplifier
built using operational amplifiers, however the RC-ladder is
unmodified [15]. In our approach we use a transistor based RC
oscillator to which a small subcircuit is added, directly inter-
acting with the RC-ladder itself. The purpose of the subcircuit
is to add a nonlinearity in the RC-ladder. The attractiveness
of the resulting circuit lies in its simplicity and low cost and
parts count. No specialized parts such as dedicated multipliers
or rare inductor values are needed. Neither the component
values nor the supply voltage is critical. The operation does not
depend on the dynamic properties of the active components,
as is often the case in even simpler chaotic circuits employing
only one transistor. The main oscillating frequency has a range
of over five decades, from below 1 Hz up to several hundred
kilohertz. which can be reached by scaling the capacitors
and/or resistors.

Additionally, the circuit has the attractive feature that the
underlying core oscillator is clearly visible in the structure.
This makes it a great introductory pedagogical tool for students
interested in chaos.
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Figure 1. A two-transistor chaotic RC phase shift oscillator. The components
in the dashed line box cause chaotic dynamics in an otherwise standard self bi-
asing RC oscillator. The components have the following values: R = 10 kΩ,
R1 = 5 kΩ, R2 = 15 kΩ, R3 = 30 kΩ, C = 1 nF, C2 = 360 pF, and
VP = 5 V.
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Figure 2. Timetrace of vCE1 (upper trace, red in color) and vCE2 (lower
trace, blue in color) for R4 = 44 kΩ, Vp = 5 V, other component values
as stated in the text.

II. CIRCUIT AND EXPERIMENTAL RESULTS

Figure 1 introduces the circuit that we have designed. It
consists of a standard single-supply self-biasing RC phaseshift
oscillator with an added subcircuit (inside the dashed line box)
interacting with the RC-ladder. Unless stated otherwise, the
following component values are used: R = 10 kΩ, R1 =
5 kΩ, R2 = 15 kΩ, R3 = 30 kΩ, C = 1 nF, C2 = 360 pF.
The transistors Q1 and Q2 are of the type BC547C although
this is not critical. Both the first resistor of the RC-ladder and
the collector resistor of transistor Q1, have been chosen equal
to 1/2R. Since the output resistance of a common emitter
amplifier roughly equals the collector resistor, the combined
resistance equals R, thus forming the first resistor of the ladder.
The frequency at which the RC-ladder has 180◦ phase lag nec-
essary for oscillation, is given by f =

√
6/2πRC ≈ 39 kHz.

Due to the loading of the last RC stage by transistor Q1’s base,
the free running frequency is shifted to 54 kHz. The subcircuit

consisting of Q2, R2, R3, R4 and C2 is responsible for the
chaotic behaviour. This subcircuit adds a new equilibrium
in which transistor Q1 is also biased as an active amplifier,
enabling oscillations. It is clear that for low R4 or low Vp,
transistor Q2 does not conduct and the circuit reduces to
the unmodified phase shift oscillator. The base oscillation
frequency in the chaotic operating regime for R4 = 44 kΩ,
Vp = 5 V is approximately 44 kHz. The circuit consumes
3.1 mW at 5 V. In Figure 2, we show the time trace of vCE1.
The dynamical behavior consists of jumps between two states
of high and low voltage of the collector of Q2. In between
these jumps growing oscillations are observed on the collector
of Q1. Note that the collector voltage of Q2 has an almost
binary distribution. In Figure 3(a), we show an oscilloscope
picture of vCE1 vs. vCE2 for R4 = 44 kΩ and Vp = 5 V, from
which the bistable oscillations around two unstable equilibria
are clearly visible. Figures 3(b) and 3(c), showing vCE1 vs.
v2, and v1 vs. v2 respectively, also attest to this, where
the openings or ’eyes’ of the attractor indicate a possible
unstable equilibrium at their center. To estimate the largest
Lyapunov exponent, we use the Time Series Analysis ’Tisean’
package[16], from a timetrace consisting of 50000 points of
vCE1, representing 10 ms, as λ ≈ (0.045± 0.005) /µs. A
positive Lyapunov exponent is a strong indication of chaotic
dynamics. In Figure 4, we show oscilloscope pictures of v1
vs. vCE1 for increasing values of R4 at Vp = 5 V, indicates
the evolution of the dynamics to chaos. For R4 = 0 kΩ the
subcircuit is inactive such that a simple limit cycle exists (not
shown). Close to R4 = 30 kΩ [Figure 4(a)] we see a period
doubling bifurcation. At R4 = 31.6 kΩ [Figure 4(b)] a critical
slowing down occurs as shown by the point of high intensity
on the analog oscilloscope picture. This value marks the onset
of a bistable operation. Subsequent period doublings lead to
chaos as seen in Figure 4(d) and Figure 4(e). The attractor
consists of oscillations around two unstable equilibria with
lower and higher average vCE1. The asymmetry between the
upper and lower opening of the attractors is caused by different
average collector current of transistor Q1, resulting in different
gain. This asymmetry is seen regardless of which projection is
chosen. Further increase of R4 [Figure 4(f)] leads to a period
halving sequence.

III. MODEL AND SPICE SIMULATION

The circuit of Figure 1 is described by:

RC
dv1
dt

= − v1
(

1 +
R

R1
− RR3

R1(2R3 +R1)

)
(1)

+ v2 +
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(
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)
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dv2
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= − 2v2 + v1 + vBE1 − iC2R, (2)
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dvBE1
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(2R3 +R1)C2
dvBE2

dt
= − vBE2

(
2 +

2R3 +R1

R4

)
(4)

+ v1 + Vp − iC1R1
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Figure 3. Attractor projections from the circuit for R4 = 44 kΩ, Vp = 5 V. (a) horizontal: vCE1, 0.2 V/div, vertical: vCE2, 0.1 V/div, (b) horizontal:
vCE1, 0.2 V/div, vertical: v2, 20 mV/div, (c) horizontal: v1, 0.1 V/div, vertical: v2, 20 mV/div.

(a) R4 = 30 kΩ. (b) R4 = 31.6 kΩ. (c) R4 = 37.5 kΩ.

(d) R4 = 39.5 kΩ. (e) R4 = 44 kΩ. (f) R4 = 75 kΩ.

Figure 4. The route to chaos. Horizontal: vCE1, vertical: v1 for increasing values of R4 at Vp = 5 V. The asymmetry between the upper and lower ’eye’
of the attractors is caused by different average collector current of Q1, resulting in different gain.

The currents iB1, iB2, iC1 and iC2 are determined by the
transistor model and are a function of the base-emitter and
collector voltages vBE1, vBE2, vCE1 and vCE2. These form
the nonlinearities in the circuit. Note R2 is absent from (1)-
(4), however since vCE2 = v2 − iCE2R2, current iC2 is
influenced by R2. In Figure 5, we show timetraces of vCE1

and vCE2 as generated from Spice. These again show bistable
oscillations for vCE1 and jumping between a high and a low
state for vCE2 and have a good qualitative agreement with the
measurements in Figure 2. In Figure 6, a three dimensional
plot of this simulation adding v1 as third variable, is shown
with color intensity coding used to indicate time from orange
(beginning of the simulation) to light yellow (towards the end

of the simulation). The bistable nature of the circuit in this
operating regime is clear. A projection on the vCE1-v1 plane is
shown for comparison with Figure 4(e). Figure 7(a) shows the
one dimensional bifurcation diagram of vCE1 for parameter
R4, with Vp = 5 V, where the dynamics start for low values
of R4 with a limit cycle, evolving to chaos at R4 ≈ 45 kΩ
through period doubling bifurcations. The chaotic dynamics
are interspersed with small periodic windows indicating the
possible co-existance of a chaotic attractor with a limit cycle.
Similar results can be obtained by varying R3 while keeping
other parameters fixed. In general it must be noted that the
location of the features in these plots depends much on the
transistor model, even for the same type of transistor, as
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Figure 5. vCE1 (black) and vCE2 (grey) via Spice simulation for R4 =
44 kΩ and Vp = 5 V.
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Figure 6. A three dimensional view of the attractor at Vp = 5 V and
R4 = 44 kΩ, generated from a 5 ms Spice generated timeseries in 100 ns
increments. Coloring intensity indicates transistion time during the simulation,
from orange at the beginning, to light yellow, near the end of the simulation.

these models differ somewhat per manufacturer. Figure 7(b)
indicates that the circuit can produce chaos over a wide range
of supply voltages as confirmed in our experiments.

IV. THE ’HIDDEN’ BISTABLE CIRCUIT

Here we offer a qualitative explanation for the appearance of
chaos in this circuit. Intuitively the circuit can be understood
as a Schmitt-trigger combined with an oscillator as follows.
If one removes capacitors C from Figure 1 as in Figure 8,
one ends up with a circuit in which there is only one energy
storing element, C2. The node voltages in equilibrium of
this one dimensional circuit equal those of the original four
dimensional circuit. Often when a circuit shows bistability,
in at least one of the states the active components are either
saturated or non-conducting such that there is no gain available
to support oscillation. We now show that transistor Q1 has
gain in both states. Consider the circuit with capacitors C
removed as described above. Intuitively, if vBE2 < 0.6 V,
Q2 is non conducting, then vCE1 ≈ vBE1 ≈ 0.6 V. If by
some external disturbance or a variation of R4, vBE2 rises
above ≈ 0.6 V, Q2 will begin to conduct. Consequently vBE1

decreases, resulting in an increase of vCE1, increasing vBE2,
etc. until Q2 is saturated. At this point, with the choice of
components where R1 +R = R2, we have vCE1 ≈ 2×0.6 V.
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Figure 7. One dimensional bifurcation diagrams generated from Spice data.
(a) over R4 with V p = 5 V , (b) over Vp for R4 = 44 kΩ. Both plots show
period doubling routes to chaos, periodic windows and crises.
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Figure 8. By removing the capacitors C associated with the oscillator in
Figure 1, the embedded bistable circuit becomes visible.
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Thus intuitively there two states exist, distinguished by Q2

being either conducting or not, while Q1 is biased as an active
amplifier in both states. These states are stable for the circuit
of Figure 8. In the case of the full four dimensional circuit
however, these states are unstable and form the centers of the
observed oscillations. Indeed both experimentally and numer-
ically we find that transistor Q2 is most of the time either
non conducting or saturated, as shown in Figure 2. Hysteretic
jumping as a basis of chaotic dynamics has been found in
other chaotic oscillators, as described in references [17] and
[18].

V. DISCUSSION

A chaotic oscillator derived from a self biasing discrete
resistor-capacitor ladder oscillator has been introduced. The
circuit does not need specialty components and operates from a
single supply voltage. It has a wide frequency range which can
be chosen by scaling the capacitors and/or resistors. Therefore
it is suited for many applications such as robotics, random
number generators and chaos encryption. Being inductorless
and thus avoiding hard-to-manage magnetic couplings between
nearby units, it also lends itself well for research into the
dynamics of chaotic networks. Spice simulations confirm
the chaotic dynamics found experimentally. Intuitively the
circuit can be explained as an oscillator modified such that
growing oscillations exist around two unstable fixed points,
with hysteretic jumping between them.
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