
INDUCTORLESS CHUA'S CIRCUIT (based on http://www.chuacircuits.com)

The circuit shown below is a version of Chau's Circuit in which the physical inductor has been replaced by a synthesized inductor (aka: "gyrator") consisting of R7, R8, R9, R10, C, and two op-amps.

 $L = (R_7 R_9 R_{10} C)/R_8$  for the synthesized inductor.

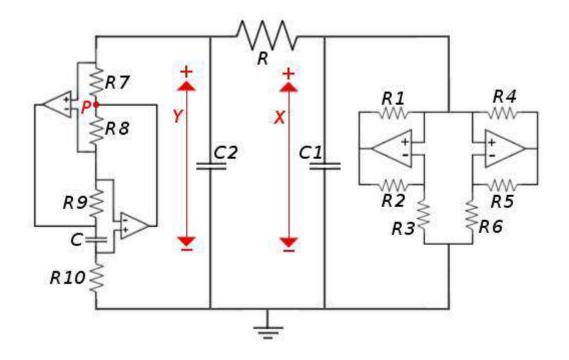


**FIGURE A** 

## **COMPONENTS**

| R=2.5 kΩ<br>(pot.)                | C=100 nF               |
|-----------------------------------|------------------------|
| R <sub>1</sub> =220 Ω             | C <sub>1</sub> =10 nF  |
| R <sub>2</sub> =220 Ω             | C <sub>2</sub> =100 nF |
| R <sub>3</sub> =2.2 kΩ            |                        |
| R₄=22.0 kΩ                        |                        |
| R₅=22.0 kΩ                        |                        |
| R <sub>6</sub> =3.3 kΩ            |                        |
| R <sub>7</sub> =100 Ω             |                        |
| R <sub>8</sub> =1.0 kΩ            |                        |
| R <sub>9</sub> =1.0 kΩ            |                        |
| R <sub>10</sub> =2.5 kΩ<br>(pot.) |                        |

All op-amps are TL082 or equivalent.


Adjust R10 to a value of 1.8k Ohms to make the value of L = 18 mH. (Alternatively, you can replace R10 with a 1.8k Ohm fixed resistor.)

There are 3 voltages that are important in this Inductorless Chua's circuit. These are shown in Figure B as X, Y, and P.

X is the voltage across the capacitor C<sub>1</sub>

Y is the voltage across the capacitor C<sub>2</sub>

P is the voltage at the junction of R7 and R8 (measured with respect to ground) which can be used to determine the current through the inductor,  $I_L$ , by the relation  $I_L = (V_P-Y)/R_7$ 



## FIGURE B

Take any two of the three voltages X, Y, and P. Display either one versus the other to get the strange attractor for this Inductorless Chau's Circuit.