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Periodicity and Chaos in Chua’s Circuit 

GUO-QUN ZHONG AND F. AYROM 

A~~rracr -This paper reports a period-doubling route to chaos as ob- 
served from a laboratory model of the simplest possible chaotic autono- 
mous circuit: it is made of two linear capacitors, one linear inductor, one 
linear resistor, and only one nonlinear 24erminal resistor characterized by 
a Ssegment piecewise-linear u - i characteristic. 

The circuit shown in Fig. l(a) with the nonlinear resistor u-i 
characteristic shown in Fig. l(b) was recently conceived and 
proposed by Chua to be the simplest, third-order, autonomous 
(no ac sources), and reciprocal’ circuit that could give rise to 
complicated chaotic dynamics. Several chaotic attractors had 
since been observed by Matsumoto via computer simulation of 
this circuit over a rather robust parameter range [l]. An experi- 
mental confirmation of these attractors has already been reported 
[2]. Our objective in this paper is to report some bifurcation and 
chaotic phenomena as measured from an actual circuit. Since the 
nonlinear resistor in Chua’s circuit is not available as an “off-the 
shelf” device, our first task was to design and build such a device. 
The final circuit shown in Fig. 2(a) uses two operational ampli- 
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‘From a circuit theory viewpoint, a recrprocul circuit is one made of only 
two-terminal elements such as resistors, inductors, capacitors, batteries, diodes, 
etc. Circuits containing transistors are, therefore, nonreciprocal and are gener- 
ally considered to be more complicated. 
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Fig. 1. (a) Chua’s circuit. (b) u-i characteristic of nonlinear resistor. 

(b) (4 
Fig. 2. (a) By adjusting the resistor values, any prescribed 5-segment piece- 

wise-linear u-i characteristic similar to Fig. l(b) can be realized with this 
circuit (op amp: National/8035 741LN). (b) u-i characteristic obtained 
with Vcc = 18 V, R, = 376 s2, R, = 78 s2, R, = 5.98 ka, R, = 312 s2, R, ~1.91 
kti, and R, = 52 a. (c) u-i characteristic obtained with V,, = 15 V, RI = 3.67 
kQ, R, =1.09 k(;2, R, =5.43 kfi, R,=104 8, R,=5.36 kfi, and R,= 
128 a. 

fiers (op amp) and 6 linear resistors (in addition to the standard 
power supply for the op amp). The u-i characteristics in Figs. 
2(b) and (c) are traced from this circuit with two different sets of 
resistor values (see figure caption). Our experiments reported in 
this letter are based on measurements obtained by connecting 
each of these two setups in place of the 2-terminal nonlinear 
resistor in Fig. l(a). Note that we have exploited and made full 
use of the intrinsic saturation characteristic of the op amp 
(normally shunned in standard op amp circuit design) to realize 
the 5-segment piecewise-linear v-i characteristic in Fig. l(a); no 
other nonlinear device is used. From a circuit-theoretic point of 
view the op amp circuit in Fig. 2(a) should be enclosed by a box 
with only two terminals @ - @ accessible for external connec- 
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Fig. 3. Chaotic attractors measured from Chua’s circuit using the nonlinear 
device of Fig. 2(b) and with R = 1.03 k!$ Ct = 0.005 wF, C, = 0.1 PF, and 
L = 7.6 mH. (a) Chaotic attractor in the Vcl - Vc2 plane: scale: Va = 4V/div, 
Vcz = 2 V/div. (b) Chaotic attractor in the Va - i, plane: scale: i, = 6 
ma/div, V,, = 4 V/div. (c) Chaotic attractor in the Vcz - i, plane: scale: 
i, = 6 ma/div, Vc2 = 2 V/div. (d) Spectrum of Va( 1). (e) Spectrum of 
Vc2 (f). (f) Spectrum of iL( t). 

tion, and is therefore to be classified as a 2-terminal device. 
Compared to the other autonomous chaotic circuits reported in 

the literature [3], [4], Chua’s circuit is the simplest possible in the 
sense that chaos can not occur in an autonomous circuit (mod- 
eled by nonlinear state equations), with fewer than 3 energy 
storage elements (capacitors and inductors) and that at least one 
nonlinear element is needed even for oscillation to be possible. 

We have built the circuit in Fig. l(a) and observed a great 
variety of bifurcation and chaotic phenomena from different 
combinations of circuit parameters (R, L, C, , and C,) as well as 
different choices of the nonlinear o-i characteristics (break- 
points coordinates and slopes). In this paper we summarize the 
phenomena observed from two set-ups corresponding to the two 
v-i characteristics shown in Fig. 2(b) and (c), respectively. 

Connecting terminals @ -(@ of the circuit in Fig. 2(a) in 
place of the nonlinear resistor in Fig. l(a), various Lissajous 
figures and spectrums are measured and shown in Figs. 3 and 4, 
respectively. The circuit parameters and scales used in these 
oscilloscope tracings are given in the figure captions. 

Fig. 3(a)-(c) gives 2 perspectives of the same chaotic attractor. 
It consists of two rings joined at the upper and the lower edge by 
a thin sheet of ribbon made of trajectories. A computer simula- 
tion of this circuit (not shown) gives rise to a virtually identical 
attractor and reveals that each trajectory winds around each ring 
in a counterclockwise direction and grow in size until it hits some 
boundary set near the outer edge of the ring, whereupon it exits 
rupidIy along a thin ribbon and lands near the center of the other 
ring, thereby repeating the above phenomenon. The exit points 
and times are observed to be random, thereby accounting for the 
“double-ring” limiting set 9’. Since trajectories originating from 
nearby points outside of 9 are quickly attracted to 9, it is 
natural to call 9 a chaotic attractor. The spectrums correspond- 

ing to the voltage waveform Voi( t) across capacitor C,, the 
voltage waveform V&(t) across capacitor C, and the current 
waveform i,(t) through the inductor L as shown in Fig. 3(d), (e), 
and (f), respectively, are seen to resemble a broad-spectrum noise. 

Fig. 4(a)-(e) displays the period-doubling route to chaos in 
Chua’s circuit using the nonlinearity of Fig. 2(c). The single-loop 
limit cycle in Fig. 4(a) represents a well-defined periodic wave- 
form spawned by a Hopf bifurcation process when a pair of 
complex-conjugate eigenvalues associated with an equilibrium 
point of this circuit crosses the imaginary axis and enters the 
right-half plane. A slight decrease in the value of R leads to the 
sequence of Lissajous figures shown in Fig. 4(b)-(e). Fig. 4(a)-(d) 
shows three successive period-doublings giving rise to a 2, 4, and 
8-100~ limit cycles as we continue to decrease R in small amounts. 
A further small decrease in R leads to the chaotic attractor in 
Fig. 4(e). The structure between the two rings in this attractor is 
clearer than that shown in Fig. 3(a)-(c). It appears also to be 
quite a bit more complicated than is apparent from the earlier 
thin ribbon paths. Since the range of R between Fig. 4(a) and 
4(e) is very narrow (1.7-1.5 Q), as is typical of the convergence 
property of the period-doubling bifurcation parameter, we were 
unable to observe a periodic waveforms with order higher than 8. 
Our results, however, suggest strongly that the chaotic attractor 
in Fig. 4(e) is spawned by a period-doubling mechanism. 

Finally, we remark that one of the reviewers pointed out that 
in [5] a second-order circuit has been presented which exhibits 
chaos. However, the nonlinearity in this system is described by a 
binary hysteresis (which is a multivalued dynamic nonlinearity) 
and can not be described by a second order state equation 
i = f(x) with a continues f( .). In other words Chua’s circuit is 
indeed the simplest reciprocal autonomous circuit capable of 
exhibiting chaotic behavior. 
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Fig. 4. Waveforms (left side) and spectrums (right side) showing the period 

doubling route to chaos in Chua’s circuit using the nonlinear device of Fig. 
2(c) and with Ct = 0.005 pF, C, = 0.05 PF and L = 7.2 mH. (a) Single-loop 
cycle. Scale: Vcl = 5 V/div, V,, = 0.4 V/div. (b) Double-loop cycle. Scale: 
Vc, = 5 V/dib, V,, = 0.4 V/div. (c) 4-loop cycle. Scale: Va = 5 V/div, 
Vc2 = 0.4 V/div. (d) R-loop cycle. Scale: Va = 2 V/div, V,, = 0.4 V/div. (e) 
Chaotic attractor in the V,,- V,. Scale: Va = 5 V/div, Vc2 = 0.4 V/div. 
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A Note on Global Implicit Function Theorems 

SHIGEO ICHIRAKU 

Abstrcrcf -Applying the theory of covering maps, we will give an exten- 
sion of global implicit function theorems proved by Sandberg [l]. Although 
he mentioned the theory of covering maps, he did not appeal to it. In fact, 
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