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A prototype equation to the Lorenz model of turbulence contains just one (second-order) nonlinearity in one
variable. The flow in state space allows for a “folded” Poincardmap (horseshoe map). Many more natural and

artificial systems are governed by this type of equation.

Continuous chaos has, under the name of deter- y

ministic nonperiodic flow, been first described by

E.N. Lorenz in a model of turbulence [1]. The same

model has recently been found to apply to lasers as

well, explaining the phenomenon of irregularly spiking

lasers in this case [2]. The Lorenz equation consists of
three coupled ordinary differential equations which

contain two nonlinear terms (of second order, xz and

xy): Z

8(1) x ____________

~=lO(y x), 5’”x(28—z)—y, zxy -
3z.

The flow of trajectories in state space (fig. 1) shows Fig. 1. Trajectories of the Lorenz model (eq. 1). Stereoscopic

two unstable foci (spirals) suspended in an attracting view. (Parallel projections; the left-hand picture is meant for

surface each, and mutually connected in such a way the right eye and vice versa.) Numerical simulation on a
HP9820A calculator with peripherals, using a standard

that the outer portion of either spiral is “glued” Runge-Kutta-Merson integration routine (adapted by F.

toward the side of the other spiral, whereby the outer- Göbber). Axes: —29 ... +29 for x andy, 0 ... 58 for z. Initial

most parts of the first spiral map onto the more inner conditions assumed: x(O) = 2.9, y(O) = 1.3, z(O) = 25.

parts of the second, and vice versa. Unexpectedly, the Final values: tend = 31.668, x(end) = 4.451, y(end) =

qualitative behavioi of eq. (1) is still insufficiently 2.3833, z(end) = 30.933.

understood, mainly because the usual technique for

analyzing oscillations — to find a (Poincaré) cross- generated flow (fig. 2) is that of a (disk-embedded)
section through the flow which is a (auto-) diffeo- single spiral. The outer portion returns, after an ap-

morphism [3] is not applicable. A trick which propriate twist (so that the formation of a Möbius

exploits the inherent (though imperfect) symmetry band is involved [4]), toward the side of the same

between the two “leaves” of the flow (see fig. 1), so spiral, with the outermost parts again facing the more

that in effect only a single leafneeds to be considered, central parts.The trajectorial convolute looks much

has yet to be found. like that on a single leafof fig. 1. This time, however,

Therefore, a simpler equation which directly a qualitative understanding of the “chaotic flow”

generates a similar flow and forms only a single spiral (a term coined by Yorke for analogous discrete systems;

may be of interest, even if this equation has, as a see ref. [5] and below) is easier to obtain.

“model of a model”, no longer an immediate physical By drawing an unwindingspiral on a transparent
interpretation. The proposed equation is: sheet of paper, foldingthe sheet over, and gluing the

(2)
= —(y +z), j~= x + O.2y, I = 0.2 + z(x 5.7). outer part of the spiral onto the inner one, an analog

to the flow of fig. 2 is obtained. When carefully fol-
There is only a single nonlinear term (zx) now. The lowing-up the prescribed course of a trajectory within
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[4]. Thus, the limit set is a so-called strange attractor

[61whose cross-section is a two-dimensional Cantor
set~the flow is nonperiodic and structurally stable [6],

even though all trajectories are unstable [1]. Thus,

most of the results which have been conjectured aboutL~Lc~eq. (1) [1] turn out to be true for eq. (2). The simplic-ity (not to say: triviality) of eq. (2) has the additionalasset that some further results that one would like toknow about strange attractors in general (basin struc-x ture; emergence through hard and soft bifurcation;behavior of the monostable variant; behavior under

Fig. 2. Trajectorial flow of eq. (2). Stereoplot as in fig. 1. time reversal) may be easier to obtain with this equa-
Axes: 14... +14 forxandy, 0... 28 forz. Assumed initial tion.
conditions: x(0) — 0, y(O) — 6.78, z(0) = 0.02. Final values: Eq. (2) incidentally illustrates a more general prin-
tend = 339.249, x(end) 7.8366, y(end) — 4.1803,
z(end) — 0.014385. ciple for the generation of “spiral type” chaos [71:

combining a two-variable oscillator (in this case x and
y) with a switching-type subsystem (z) in such a way

this “trap”, one comes up with a picture very much that the latter is being switched by the first while the
like that of fig. 2. If one then varies the degree of flow of the first is dependent on the switching state of

overlap, it is apparent that nonperiodic behavior is the latter. Eq. (2) has in fact been derived from a more

obtained if and only if at least two successive increases complicated equation for which this “building-block

of amplitude are possible for the outermost trajectory, principle” has been shown to apply strictly [41.The
after it has become the innermost trajectory. Most named design principle not only enables the construe-

recently, a proof of this result has been described tion of an unlimited number of artificial chaotic sys-

(under the suggestive title “period 3 implies chaos”) tems, but at the same time can be used as a guideline

for one-dimensional “cap-shaped” maps [5]. Such a for the identification of further natural systems show-

map will indeed be found along any cross-section ing the same behavior (by suggesting to probe into

through the desired paper-sheet flow, if the reentry their parameter space). The field of possible applica-

point through the cross-section is plotted as a function tions of equations of the type of eq. (2) thus ranges

of the entry point. (The converse is also true: every fromastrophysics, via chemistry and biology, to

cap-shaped map gives rise to a paper-sheet flow pos- economics [71.

sessing this map as a Poincaré cross-section.) To conlude, continuous chaos is “stangely attrac-
Closer inspection of fig. 2 reveals, however, that the tive” as a physical phenomenon (cf. [8]).

flow actually is not confined to a (folded) two-

dimensional surface, but rather to a ~folded) disk of This work has been supported by the Stiftung
finite width. Every cross-section through the flow is Volkswagenwerk. I thank Professor H. Haken for

therefore two-dimensional (rather than one-dimensio- discussions.

nal). It assumes the form of a horseshoe between one

transition and the next. This becomes evident if one
follows the course of one (at first) rectangular cross- References
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